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Abstract
We consider the free interface between demixed fluid phases in a mixture of
hard spheres and vanishingly thin hard rods using Monte Carlo simulations
and density functional theory. Both approaches treat the full binary mixture
and hence include all rod-induced many-body depletion interactions between
spheres. The agreement between theoretical and simulation results for density
and orientation order profiles across the interface is remarkable, even for
states not far from the critical point. The simulation results confirm the
previously predicted preferred vertical (parallel) alignment of rod orientation to
the interface plane at the sphere-rich (sphere-poor) side. This ordering should
be experimentally observable in phase-separated colloidal rod–sphere mixtures.

1. Introduction

The gas–liquid interface of a simple substance is characterized by the variation of the density
of particles in the direction perpendicular to the interface. The number density is the only order
parameter in this situation. Complex systems possess more than a single order parameter and
hence may display richer interfacial structure, such as composition fluctuations in mixtures
of different components and orientation fluctuations of anisotropic particles. Examples of
complex model systems that display fluid–fluid phase separation and hence are suitable to
study interfacial structure are mixtures of colloidal spheres and rods.

Much work has been devoted to understanding the bulk phase behaviour of rod–sphere
mixtures [1–7]. Among the different techniques employed are computer simulations [1], free-
volume [1, 2] and liquid integral equation [4, 5] theories, as well as experiments with silica
spheres mixed with silica coated bohemite rods [2, 3] or polymeric rods [6, 7]. It can be
concluded that the gas, fluid and solid phase are thermodynamically stable and that the rod
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fugacity plays a role similar to that of inverse temperature in simple fluids. The second control
parameter is the ratio of rod length L to sphere diameter σ ; for large enough values, stable
bulk fluid–fluid demixing occurs [1].

The simplest model in this context is the binary mixture of hard spheres and vanishingly
thin hard rods proposed in [1]. Previous work on this model includes investigation of its phase
behaviour with simulation and perturbation theory [1]. Recently, a density functional theory
(DFT) [8], built upon Rosenfeld’s ideas [9–11], was proposed [12]. Application to the free
interface between demixed fluids predicts intriguing ordering behaviour at the interface [13].
By integrating out the rod degrees of freedom, effective pair depletion interactions between
spheres and between sphere and a hard wall were derived [14, 15]. For small needle-to-sphere
size ratios this was shown to be an accurate description and, using a theory for the effective one-
component fluid of spheres, purely entropy-induced wetting of the hard wall was found [16].
Rod-induced depletion forces have been experimentally measured and were found to compare
well with theoretical predictions [17–19]. Non-vanishing interactions between rods further
enrich phase behaviour [20] and correlations between spheres [21].

Despite the existing applications of the rod–sphere DFT [12] to free interfaces [13] and
wetting at a hard wall [16], results from the theory have so far been tested against simulation
results only in bulk, namely those for the phase diagram and for partial pair distributions
between spheres [12]. While theory has passed these (minimal) tests, a full simulation of
wetting properties at a hard wall, for example, would be a very demanding task (see e.g. [22]
for simulations of a related colloid–polymer mixture). In this work we consider the fluid–fluid
interface between demixed fluid phases using Monte Carlo (MC) simulations to obtain density
and orientation order parameter profiles which we compare to theoretical results. We find that
the theory very accurately describes the simulation results for interface profiles. In particular
the simulations confirm that on the needle-rich (sphere-rich) side of the interface the needles
are aligned preferentially parallel (vertical) to the interface plane. This effect is present even
for vanishing rod–rod interactions and hence is similar, but of different origin, to molecular
ordering at the isotropic–nematic interface of hard rods [23].

The paper is organized as follows. In section 2 the theoretical model is defined and brief
outlines of both simulation and theoretical methods are given. Section 3 presents results for
the interfacial structure. We conclude in section 4.

2. Model and methods

2.1. Definition of the model

We consider a binary mixture of colloidal spheres with diameter σ (species S) and needle-like
rods with length L and vanishing thickness (species N). The pair interaction between colloids
as a function of centre-to-centre distance r is that of hard spheres: VSS(r) = ∞ if r < σ and
zero otherwise. The pair interaction between a sphere and a needle depends on the distance
vector from sphere centre to rod centre, r, and on rod orientation Ω and is that of hard bodies:
VSN(r,Ω) = ∞ if both particles overlap and zero otherwise. Due to their vanishing thickness
the rods can be regarded as non-interacting: VNN = 0 for all distances and orientations. In
figure 1 an illustration of the model is displayed.

As thermodynamic parameters we use the sphere packing fraction η = πσ 3ρS/6 and a
reduced needle density ρNσ 3, where the number densities are defined as ρi = Mi/V , the
numbers of particles are Mi and the system volume is V . The size ratio L/σ is a geometric
control parameter. We restrict ourselves in the following to L/σ = 3, which is small enough
to keep the size of the simulation box reasonably small, and large enough to keep the number
of rods necessary to induce phase separation manageable.
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Figure 1. Illustration of the model of hard spheres of diameter σ (gray circles) and vanishingly
thin needles of length L (lines). The z-coordinate is perpendicular to the free interface between
sphere-rich (left) and sphere-poor (right) phases.

In the following we will seek to obtain the one-body density distributions of particles across
planar fluid–fluid interfaces. For spheres, the dependence is only on the position coordinate, so
we have ρS(z). For needles, we have ρN(z, θ), where θ is the angle between rod orientation Ω
and the z-direction normal to the interface. For simplification, we consider an angle-averaged
needle density given by ρ̄N(z) = ∫

dΩ/(4π)ρN(z, θ); this can be viewed as the density
distribution of rod centres. Needle orientations are analysed by means of an orientation order
parameter profile, defined as

P2(z) = ρ̄N(z)−1
∫

dΩ
4π

ρN(z, θ)[3 cos2(θ) − 1]/2, (1)

where the integrand is ρN weighted with the second Legendre polynomial in cos θ . This is the
obvious local generalization with respect to the z-direction of the familiar bulk nematic order
parameter.

2.2. Computer simulations

We perform canonical ensemble MC simulations using a simulation box with periodic boundary
conditions, quadratic area in the xy-plane, and extended (compared to x and y) length in the
z-direction in order to stabilize the interface. The movement of the whole system in the z-
direction is suppressed by fixing the z-coordinate of the origin in the centre of mass of the
spheres. The needle fugacity is obtained using Widom’s particle insertion method [24].

Detailed parameters in the simulations are as follows. Statepoint A possesses particle
numbers MS = 150 and MN = 913, the box length in the z-direction is 12σ , and the lateral box
area is 32σ 2. The resulting densities are η = 0.2045 and ρNσ 3 = 2.3776Note 5. The sequence
of statepoints B is for MS = 200 and MN = 1000, 1200, 1400 and 1600, box length 24σ

and box area 32σ 2. The corresponding densities are ρNσ 3 = 1.302, 1.563, 1.823 and 2.083,
and η = 0.1363. An investigation of the effect of (lateral) finite size effects was done for the
statepoint ρNσ 3 = 1.823, η = 0.1363, box length 12σ and two different (lateral) system sizes.
The small system has MS = 200, MN = 700 and lateral box area 32σ 2. The large system has
MS = 800, MN = 2800 and lateral box area 128σ 2.

5 In this work we consider only one fixed size ratio; when comparing results for different L/σ it is useful to scale the
needle density as ρN L2σ [12].
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In all simulations the system was equilibrated for 5×104 MC cycles. In each cycle, every
particle is moved and/or rotated once, on average. For production, we performed 4 × 105

cycles for each statepoint (except for the case of the largest system where 1 × 105 cycles were
done).

2.3. Density functional theory

In our theoretical approach the grand potential is expressed as a functional of the one-body
density distributions of spheres and needles, �[ρS, ρN], using the approximation of [12, 13].
The advantage over direct application of Rosenfeld’s original approach [10, 11] for anisotropic
particles is that the Mayer functions are correctly recovered in a low-density expansion of the
free energy functional. The minimization conditions, δ�/δρS(z) = 0 and δ�/δρN(z, θ) = 0,
are solved numerically with a standard iteration procedure. The angular dependence is treated
by discretizing θ ; our implementation follows closely that of [13], where many more technical
details that also apply to the present work can be found.

In order to compare with the simulation results, we impose the same periodicity in the
z-direction as given by the periodic simulation box. For each statepoint considered during the
iteration, the total densities of both components are fixed to the corresponding values from the
simulation.

3. Results

We plot in figure 2 the fluid–fluid demixing phase diagram as a function of total sphere packing
fraction η and needle fugacity exp(βµN), where β is the inverse temperature and µN is the
needle chemical potential. For high enough values of exp(βµN) phase separation into a dilute
phase (sphere gas) and a dense phase (sphere liquid) occurs. As is known [12], the binodal
obtained from DFT is equal to that from perturbation theory [1], and rather accurately describes
the simulation results [1]. We also mark the deeply demixed statepoint A and the sequence of
statepoints B at constant η, roughly the value at the critical point, and decreasing exp(βµN).

As an illustration, in figure 3 we show a snapshot from the simulation of the deeply
demixed state. This demonstrates that the fluid–fluid interface can indeed be stabilized in our
simulation setup. Obviously, on this microscopic scale, the interface is not sharp, and we next
turn to its detailed structure and consider the deeply demixed state at high exp(βµN) (marked
as statepoint A in figure 2).

As can be expected from the coexistence values of η for statepoint A, the sphere gas
possesses nearly zero density, whereas all sphere particles reside in the liquid phase (see
figure 4 for the density profile ρS(z)). A smooth crossover between both plateau values occurs
in the interfacial region. The width of the interface is somewhat larger than one might expect
for such a deeply demixed state, however, we attribute this to the relatively long needles
considered, L/σ = 3. The (orientation-averaged) needle density distribution ρ̄N(z) shows
similar behaviour to ρS(z) but is ‘out-of-phase’, as the dense sphere phase is dilute in needles
and vice versa. Finally, the orientation order of the needles, as measured by P2(z), shows that
indeed the needles align preferentially parallel to the interface plane on the needle-rich side
(P2(z) < 0), and align preferentially perpendicular to the interface plane on the sphere-rich
side (P2(z) > 0). Quantitatively, the effect is not very big; recall that the extreme values
for perfectly aligned rods are P2 = −1/2, 1. The overall agreement between simulation and
theoretical results is very remarkable.

This gives us confidence to turn next to the sequence of statepoints approaching the critical
point (marked as statepoint B in the phase diagram, figure 2). In this case, fluctuations are
expected to be more important. In figure 5, results for ρi(z), i = S, N and P2(z) are shown.
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Figure 2. Phase diagram for sphere–needle size ratio L/σ = 3 as a function of sphere packing
fraction η and needle fugacity exp(βµN). The results for the binodal and critical point from
DFT (line, open circle) and Gibbs ensemble MC simulations [1] (crosses, full circle) are shown.
Coexistence is along horizontal tie lines (not shown). Statepoints (stars) where interface structure
will be considered are indicated for deeply demixed conditions (A) and a sequence (B) approaching
(approximately) the critical point.

Figure 3. Snapshot from simulation of a phase-separated sphere–needle mixture for size ratio
L/σ = 3 and statepoint A (marked in the phase diagram, figure 2). The simulation box is periodic
in all three spatial directions.

(This figure is in colour only in the electronic version)

The qualitative behaviour is the same as for the deeply demixed state, however, the variations
with z become much smoother as the critical point is approached and the amplitude of P2(z)
becomes significantly smaller. The agreement between simulation and theoretical results stays
remarkable. Except for a slight shift in z for P2(z) the theoretical curves appear almost as a fit
to the MC data.
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Figure 4. One-body distribution functions of the sphere–needle mixture as a function of the scaled
coordinate z/σ normal to the free interface between deeply demixed fluid phases. The system is
periodic in the z-direction with length 12σ ; the statepoint is in the deeply demixed regime, with
η = 0.2043 and ρNσ 3 = 2.3776 (see statepoint A in figure 2). The size ratio is L/σ = 3. The
results shown are from simulation (symbols) and theory (curves) for the sphere density profile
ρS(z)σ 3 (upper panel), orientation-averaged needle density profiles ρN(z)σ 3 (middle panel) and
orientation order parameter profile P2(z) (lower panel).
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Figure 5. As figure 4, but for a sequence of statepoints with constant η = 0.1363 and increasing (in
the direction of the arrow) needle densityρN σ 3 = 1.3021, 1.5625, 1.8229 and 2.083 (corresponding
to the sequence of statepoints B in figure 2).
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Figure 6. As figure 4 but for system length 12σ , η = 0.1363 and ρNσ 3 = 1.8229. Simulation
results are shown for different lateral (perpendicular to the z-direction) system sizes: a small system
with MS = 200, MN = 700 and lateral box area 32σ 2 (open symbols), and a large system with
MS = 800, MN = 2800 and lateral box area 128σ 2 (filled symbols).

For completeness, we give the theoretical results for the surface tension γ . For the three
high rod fugacities within sequence B, these are βγ σ 2 = 0.500 ± 0.003, 0.343 ± 0.003 and
0.202 ± 0.006, where the errors given are a conservative estimate and arise from the fact that
the bulk values are not perfectly satisfied in the periodic geometry. For this reason no reliable
value for γ at the statepoint closest to the critical point could be obtained.

As a final investigation, we compare simulation results for the same statepoint, but two
different lateral (perpendicular to the z-direction) system sizes, differing by a factor of two in
linear size (see figure 6). As expected, the larger system possesses slightly smoother profiles.
However, the effect is small, and hence we trust that the simulation results do represent the
‘bare’ density profiles. We have not attempted a complete investigation of the influence of
capillary waves, which would require much larger system sizes.

4. Conclusions

In conclusion, we have performed a detailed comparison between simulation and theoretical
results for the free planar interface between demixed fluid states in a binary mixture of hard
spheres and hard rods. The simulation results confirm the previously found ordering of the
rods at the interface. While the alignment parallel to the interface on the needle-rich side can
be understood in terms of packing against the sphere-rich phase, similar to packing of rods
against a hard wall, the normal alignment inside the sphere-rich phase is more subtle. Consider
a rod with fixed centre on the sphere-rich side close to the interface. Rotating this rod towards
the surface normal will expose less of its shape to the spheres, and hence minimize collisions
with spheres. This generates an entropic torque [25] that tends to align rods along the interface
normal.

Very good quantitative agreement between results from simulation and theory for
the density profiles of both species, as well as the orientation order parameter profile,
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have been found. We have checked that the lateral system dimensions do not play a prominent
role but have not attempted to do a systematic investigation of the influence of capillary waves
on the interface structure.

We hope to stimulate experimental work on interfaces in rod–sphere mixtures. In
particular, measuring the orientation order of rods either in real space or via the induced
optical anisotropy would be a very interesting goal.
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